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ABSTRACT
The past 3 years of work in NLP have been characterized by the
development and deployment of ever larger language models, es-
pecially for English. BERT, its variants, GPT-2/3, and others, most
recently Switch-C, have pushed the boundaries of the possible both
through architectural innovations and through sheer size. Using
these pretrained models and the methodology of fine-tuning them
for specific tasks, researchers have extended the state of the art
on a wide array of tasks as measured by leaderboards on specific
benchmarks for English. In this paper, we take a step back and ask:
How big is too big? What are the possible risks associated with this
technology and what paths are available for mitigating those risks?
We provide recommendations including weighing the environmen-
tal and financial costs first, investing resources into curating and
carefully documenting datasets rather than ingesting everything on
the web, carrying out pre-development exercises evaluating how
the planned approach fits into research and development goals and
supports stakeholder values, and encouraging research directions
beyond ever larger language models.
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1 INTRODUCTION
One of the biggest trends in natural language processing (NLP) has
been the increasing size of language models (LMs) as measured
by the number of parameters and size of training data. Since 2018
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alone, we have seen the emergence of BERT and its variants [39,
70, 74, 113, 146], GPT-2 [106], T-NLG [112], GPT-3 [25], and most
recently Switch-C [43], with institutions seemingly competing to
produce ever larger LMs. While investigating properties of LMs and
how they change with size holds scientific interest, and large LMs
have shown improvements on various tasks (§2), we ask whether
enough thought has been put into the potential risks associated
with developing them and strategies to mitigate these risks.

We first consider environmental risks. Echoing a line of recent
work outlining the environmental and financial costs of deep learn-
ing systems [129], we encourage the research community to priori-
tize these impacts. One way this can be done is by reporting costs
and evaluating works based on the amount of resources they con-
sume [57]. As we outline in §3, increasing the environmental and
financial costs of these models doubly punishes marginalized com-
munities that are least likely to benefit from the progress achieved
by large LMs and most likely to be harmed by negative environ-
mental consequences of its resource consumption. At the scale we
are discussing (outlined in §2), the first consideration should be the
environmental cost.

Just as environmental impact scales with model size, so does
the difficulty of understanding what is in the training data. In §4,
we discuss how large datasets based on texts from the Internet
overrepresent hegemonic viewpoints and encode biases potentially
damaging to marginalized populations. In collecting ever larger
datasets we risk incurring documentation debt. We recommend
mitigating these risks by budgeting for curation and documentation
at the start of a project and only creating datasets as large as can
be sufficiently documented.

As argued by Bender and Koller [14], it is important to under-
stand the limitations of LMs and put their success in context. This
not only helps reduce hype which can mislead the public and re-
searchers themselves regarding the capabilities of these LMs, but
might encourage new research directions that do not necessarily
depend on having larger LMs. As we discuss in §5, LMs are not
performing natural language understanding (NLU), and only have
success in tasks that can be approached by manipulating linguis-
tic form [14]. Focusing on state-of-the-art results on leaderboards
without encouraging deeper understanding of the mechanism by
which they are achieved can cause misleading results as shown
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in [21, 93] and direct resources away from efforts that would facili-
tate long-term progress towards natural language understanding,
without using unfathomable training data.

Furthermore, the tendency of human interlocutors to impute
meaning where there is none can mislead both NLP researchers
and the general public into taking synthetic text as meaningful.
Combined with the ability of LMs to pick up on both subtle biases
and overtly abusive language patterns in training data, this leads
to risks of harms, including encountering derogatory language and
experiencing discrimination at the hands of others who reproduce
racist, sexist, ableist, extremist or other harmful ideologies rein-
forced through interactions with synthetic language. We explore
these potential harms in §6 and potential paths forward in §7.

We hope that a critical overview of the risks of relying on ever-
increasing size of LMs as the primary driver of increased perfor-
mance of language technology can facilitate a reallocation of efforts
towards approaches that avoid some of these risks while still reap-
ing the benefits of improvements to language technology.

2 BACKGROUND
Similar to [14], we understand the term language model (LM) to
refer to systems which are trained on string prediction tasks: that is,
predicting the likelihood of a token (character, word or string) given
either its preceding context or (in bidirectional and masked LMs)
its surrounding context. Such systems are unsupervised and when
deployed, take a text as input, commonly outputting scores or string
predictions. Initially proposed by Shannon in 1949 [117], some of
the earliest implemented LMs date to the early 1980s and were used
as components in systems for automatic speech recognition (ASR),
machine translation (MT), document classification, and more [111].
In this section, we provide a brief overview of the general trend of
language modeling in recent years. For a more in-depth survey of
pretrained LMs, see [105].

Before neural models, n-gram models also used large amounts
of data [20, 87]. In addition to ASR, these large n-gram models of
English were developed in the context of machine translation from
another source language with far fewer direct translation examples.
For example, [20] developed an n-gram model for English with
a total of 1.8T n-grams and noted steady improvements in BLEU
score on the test set of 1797 Arabic translations as the training data
was increased from 13M tokens.

The next big step was the move towards using pretrained rep-
resentations of the distribution of words (called word embeddings)
in other (supervised) NLP tasks. These word vectors came from
systems such as word2vec [85] and GloVe [98] and later LSTM
models such as context2vec [82] and ELMo [99] and supported
state of the art performance on question answering, textual entail-
ment, semantic role labeling (SRL), coreference resolution, named
entity recognition (NER), and sentiment analysis, at first in Eng-
lish and later for other languages as well. While training the word
embeddings required a (relatively) large amount of data, it reduced
the amount of labeled data necessary for training on the various
supervised tasks. For example, [99] showed that a model trained
with ELMo reduced the necessary amount of training data needed
to achieve similar results on SRL compared to models without, as
shown in one instance where a model trained with ELMo reached

Year Model # of Parameters Dataset Size

2019 BERT [39] 3.4E+08 16GB
2019 DistilBERT [113] 6.60E+07 16GB
2019 ALBERT [70] 2.23E+08 16GB
2019 XLNet (Large) [150] 3.40E+08 126GB
2020 ERNIE-Gen (Large) [145] 3.40E+08 16GB
2019 RoBERTa (Large) [74] 3.55E+08 161GB
2019 MegatronLM [122] 8.30E+09 174GB
2020 T5-11B [107] 1.10E+10 745GB
2020 T-NLG [112] 1.70E+10 174GB
2020 GPT-3 [25] 1.75E+11 570GB
2020 GShard [73] 6.00E+11 –
2021 Switch-C [43] 1.57E+12 745GB

Table 1: Overview of recent large language models

the maximum development F1 score in 10 epochs as opposed to
486 without ELMo. This model furthermore achieved the same F1
score with 1% of the data as the baseline model achieved with 10%
of the training data. Increasing the number of model parameters,
however, did not yield noticeable increases for LSTMs [e.g. 82].

Transformer models, on the other hand, have been able to con-
tinuously benefit from larger architectures and larger quantities of
data. Devlin et al. [39] in particular noted that training on a large
dataset and fine-tuning for specific tasks leads to strictly increasing
results on the GLUE tasks [138] for English as the hyperparameters
of the model were increased. Initially developed as Chinese LMs, the
ERNIE family [130, 131, 145] produced ERNIE-Gen, which was also
trained on the original (English) BERT dataset, joining the ranks
of very large LMs. NVIDIA released the MegatronLM which has
8.3B parameters and was trained on 174GB of text from the English
Wikipedia, OpenWebText, RealNews and CC-Stories datasets [122].
Trained on the same dataset, Microsoft released T-NLG,1 an LM
with 17B parameters. OpenAI’s GPT-3 [25] and Google’s GShard
[73] and Switch-C [43] have increased the definition of large LM by
orders of magnitude in terms of parameters at 175B, 600B, and 1.6T
parameters, respectively. Table 1 summarizes a selection of these
LMs in terms of training data size and parameters. As increasingly
large amounts of text are collected from the web in datasets such
as the Colossal Clean Crawled Corpus [107] and the Pile [51], this
trend of increasingly large LMs can be expected to continue as long
as they correlate with an increase in performance.

A number of these models also have multilingual variants such
as mBERT [39] and mT5 [148] or are trained with some amount of
multilingual data such as GPT-3 where 7% of the training data was
not in English [25]. The performance of these multilingual mod-
els across languages is an active area of research. Wu and Drezde
[144] found that while mBERT does not perform equally well across
all 104 languages in its training data, it performed better at NER,
POS tagging, and dependency parsing than monolingual models
trained with comparable amounts of data for four low-resource
languages. Conversely, [95] surveyed monolingual BERT models
developed with more specific architecture considerations or addi-
tional monolingual data and found that they generally outperform

1https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-
language-model-by-microsoft/
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mBERT across 29 tasks. Either way, these models do not address
the inclusion problems raised by [65], who note that over 90% of
the world’s languages used by more than a billion people currently
have little to no support in terms of language technology.

Alongside work investigating what information the models re-
tain from the data, we see a trend in reducing the size of these
models using various techniques such as knowledge distillation
[26, 58], quantization [118, 153], factorized embedding parame-
terization and cross-layer parameter sharing [70], and progressive
module replacing [146]. Rogers et al. [110] provide a comprehensive
comparison of models derived from BERT using these techniques,
such as DistilBERT [113] and ALBERT [70]. While these models
maintain and sometimes exceed the performance of the original
BERT model, despite their much smaller size, they ultimately still
rely on large quantities of data and significant processing and stor-
age capabilities to both hold and reduce the model.

We note that the change from n-gram LMs to word vectors dis-
tilled from neural LMs to pretrained Transformer LMs is paralleled
by an expansion and change in the types of tasks they are use-
ful for: n-gram LMs were initially typically deployed in selecting
among the outputs of e.g. acoustical or translation models; the
LSTM-derived word vectors were quickly picked up as more effec-
tive representations of words (in place of bag of words features)
in a variety of NLP tasks involving labeling and classification; and
the pretrained Transformer models can be retrained on very small
datasets (few-shot, one-shot or even zero-shot learning) to perform
apparently meaning-manipulating tasks such as summarization,
question answering and the like. Nonetheless, all of these systems
share the property of being LMs in the sense we give above, that
is, systems trained to predict sequences of words (or characters or
sentences). Where they differ is in the size of the training datasets
they leverage and the spheres of influence they can possibly affect.
By scaling up in these two ways, modern very large LMs incur new
kinds of risk, which we turn to in the following sections.

3 ENVIRONMENTAL AND FINANCIAL COST
Strubell et al. recently benchmarked model training and develop-
ment costs in terms of dollars and estimated �$2 emissions [129].
While the average human is responsible for an estimated 5t �$24

per year,2 the authors trained a Transformer (big) model [136] with
neural architecture search and estimated that the training procedure
emitted 284t of �$2. Training a single BERT base model (without
hyperparameter tuning) on GPUs was estimated to require as much
energy as a trans-American flight.

While some of this energy comes from renewable sources, or
cloud compute companies’ use of carbon credit-offset sources, the
authors note that themajority of cloud compute providers’ energy is
not sourced from renewable sources andmany energy sources in the
world are not carbon neutral. In addition, renewable energy sources
are still costly to the environment,3 and data centers with increasing
computation requirements take away from other potential uses of

2Data for 2017, from https://ourworldindata.org/co2-emissions, accessed Jan 21, 2021
3https://www.heraldscotland.com/news/18270734.14m-trees-cut-scotland-make-way-
wind-farms/

green energy,4 underscoring the need for energy efficient model
architectures and training paradigms.

Strubell et al. also examine the cost of these models vs. their
accuracy gains. For the task of machine translation where large
LMs have resulted in performance gains, they estimate that an
increase in 0.1 BLEU score using neural architecture search for
English to German translation results in an increase of $150,000
compute cost in addition to the carbon emissions. To encourage
more equitable access to NLP research and reduce carbon footprint,
the authors give recommendations to report training time and
sensitivity to hyperparameters when the released model is meant
to be re-trained for downstream use.They also urge governments to
invest in compute clouds to provide equitable access to researchers.

Initiatives such as the SustainNLP workshop5 have since taken
up the goal of prioritizing computationally efficient hardware and
algorithms. Schwartz et al. [115] also call for the development of
green AI, similar to other environmentally friendly scientific de-
velopments such as green chemistry or sustainable computing. As
shown in [5], the amount of compute used to train the largest deep
learning models (for NLP and other applications) has increased
300,000x in 6 years, increasing at a far higher pace than Moore’s
Law. To promote green AI, Schwartz et al. argue for promoting
efficiency as an evaluation metric and show that most sampled
papers from ACL 2018, NeurIPS 2018, and CVPR 2019 claim accu-
racy improvements alone as primary contributions to the field, and
none focused on measures of efficiency as primary contributions.
Since then, works such as [57, 75] have released online tools to
help researchers benchmark their energy usage. Among their rec-
ommendations are to run experiments in carbon friendly regions,
consistently report energy and carbon metrics, and consider energy-
performance trade-offs before deploying energy hungry models.
In addition to these calls for documentation and technical fixes,
Bietti and Vatanparast underscore the need for social and political
engagement in shaping a future where data driven systems have
minimal negative impact on the environment [16].

While [129] benchmarks the training process in a research set-
ting, many LMs are deployed in industrial or other settings where
the cost of inference might greatly outweigh that of training in
the long run. In this scenario, it may be more appropriate to de-
ploy models with lower energy costs during inference even if their
training costs are high. In addition to benchmarking tools, works
estimating the cost increase associated with the introduction of LMs
for particular applications, and how they compare to alternative
NLP methods, will be important for understanding the trade-offs.

When we perform risk/benefit analyses of language technology,
we must keep in mind how the risks and benefits are distributed,
because they do not accrue to the same people. On the one hand, it
is well documented in the literature on environmental racism that
the negative effects of climate change are reaching and impacting
the world’s most marginalized communities first [1, 27].6 Is it fair or
just to ask, for example, that the residents of the Maldives (likely to
be underwater by 2100 [6]) or the 800,000 people in Sudan affected

4https://news.microsoft.com/2017/11/02/microsoft-announces-one-of-the-largest-
wind-deals-in-the-netherlands-with-vattenfall/
5https://sites.google.com/view/sustainlp2020/organization
6https://www.un.org/sustainabledevelopment/blog/2016/10/report-inequalities-
exacerbate-climate-impacts-on-poor/
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by drastic floods7 pay the environmental price of training and
deploying ever larger English LMs, when similar large-scale models
aren’t being produced for Dhivehi or Sudanese Arabic?8

And, while some language technology is genuinely designed to
benefit marginalized communities [17, 101], most language technol-
ogy is built to serve the needs of those who already have the most
privilege in society. Consider, for example, who is likely to both
have the financial resources to purchase a Google Home, Amazon
Alexa or an Apple device with Siri installed and comfortably speak
a variety of a language which they are prepared to handle. Fur-
thermore, when large LMs encode and reinforce hegemonic biases
(see §§4 and 6), the harms that follow are most likely to fall on
marginalized populations who, even in rich nations, are most likely
to experience environmental racism [10, 104].

These models are being developed at a time when unprece-
dented environmental changes are being witnessed around the
world. From monsoons caused by changes in rainfall patterns due
to climate change affecting more than 8 million people in India,9
to the worst fire season on record in Australia killing or displacing
nearly three billion animals and at least 400 people,10 the effect
of climate change continues to set new records every year. It is
past time for researchers to prioritize energy efficiency and cost
to reduce negative environmental impact and inequitable access
to resources— both of which disproportionately affect people who
are already in marginalized positions.

4 UNFATHOMABLE TRAINING DATA
The size of data available on the web has enabled deep learning
models to achieve high accuracy on specific benchmarks in NLP
and computer vision applications. However, in both application
areas, the training data has been shown to have problematic charac-
teristics [18, 38, 42, 47, 61] resulting in models that encode stereo-
typical and derogatory associations along gender, race, ethnicity,
and disability status [11, 12, 69, 69, 132, 132, 157]. In this section,
we discuss how large, uncurated, Internet-based datasets encode
the dominant/hegemonic view, which further harms people at the
margins, and recommend significant resource allocation towards
dataset curation and documentation practices.

4.1 Size Doesn’t Guarantee Diversity
The Internet is a large and diverse virtual space, and accordingly, it
is easy to imagine that very large datasets, such as Common Crawl
(“petabytes of data collected over 8 years of web crawling”,11 a
filtered version of which is included in the GPT-3 training data) must
therefore be broadly representative of the ways in which different
people view theworld. However, on closer examination, we find that
there are several factors which narrow Internet participation, the

7https://www.aljazeera.com/news/2020/9/25/over-800000-affected-in-sudan-flooding-
un
8By this comment, we do not intend to erase existing work on low-resource languages.
One particularly exciting example is the Masakhane project [91], which explores
participatory research techniques for developing MT for African languages. These
promising directions do not involve amassing terabytes of data.
9https://www.voanews.com/south-central-asia/monsoons-cause-havoc-india-climate-
change-alters-rainfall-patterns
10https://www.cnn.com/2020/07/28/asia/australia-fires-wildlife-report-scli-intl-
scn/index.html
11http://commoncrawl.org/

discussions which will be included via the crawling methodology,
and finally the texts likely to be contained after the crawled data
are filtered. In all cases, the voices of people most likely to hew to
a hegemonic viewpoint are also more likely to be retained. In the
case of US and UK English, this means that white supremacist and
misogynistic, ageist, etc. views are overrepresented in the training
data, not only exceeding their prevalence in the general population
but also setting up models trained on these datasets to further
amplify biases and harms.

Starting with who is contributing to these Internet text collec-
tions, we see that Internet access itself is not evenly distributed,
resulting in Internet data overrepresenting younger users and those
from developed countries [100, 143].12 However, it’s not just the In-
ternet as a whole that is in question, but rather specific subsamples
of it. For instance, GPT-2’s training data is sourced by scraping out-
bound links from Reddit, and Pew Internet Research’s 2016 survey
reveals 67% of Reddit users in the United States are men, and 64%
between ages 18 and 29.13 Similarly, recent surveys of Wikipedians
find that only 8.8–15% are women or girls [9].

Furthermore, while user-generated content sites like Reddit,
Twitter, and Wikipedia present themselves as open and accessible
to anyone, there are structural factors including moderation prac-
tices which make them less welcoming to marginalized populations.
Jones [64] documents (using digital ethnography techniques [63])
multiple cases where people on the receiving end of death threats
on Twitter have had their accounts suspended while the accounts
issuing the death threats persist. She further reports that harass-
ment on Twitter is experienced by “a wide range of overlapping
groups including domestic abuse victims, sex workers, trans people,
queer people, immigrants, medical patients (by their providers),
neurodivergent people, and visibly or vocally disabled people.” The
net result is that a limited set of subpopulations can continue to
easily add data, sharing their thoughts and developing platforms
that are inclusive of their worldviews; this systemic pattern in turn
worsens diversity and inclusion within Internet-based communica-
tion, creating a feedback loop that lessens the impact of data from
underrepresented populations.

Even if populations who feel unwelcome in mainstream sites set
up different fora for communication, these may be less likely to be
included in training data for language models. Take, for example,
older adults in the US and UK. Lazar et al. outline how they both in-
dividually and collectively articulate anti-ageist frames specifically
through blogging [71], which some older adults prefer over more
popular social media sites for discussing sensitive topics [24]. These
fora contain rich discussions about what constitutes age discrimi-
nation and the impacts thereof. However, a blogging community
such as the one described by Lazar et al. is less likely to be found
than other blogs that have more incoming and outgoing links.

Finally, the current practice of filtering datasets can further atten-
uate the voices of people from marginalized identities. The training
set for GPT-3 was a filtered version of the Common Crawl dataset,
developed by training a classifier to pick out those documents

12This point is also mentioned in the model card for GPT-3: https://github.com/openai/
gpt-3/blob/master/model-card.md
13https://www.journalism.org/2016/02/25/reddit-news-users-more-likely-to-be-male-
young-and-digital-in-their-news-preferences/
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most similar to the ones used in GPT-2’s training data, i.e. docu-
ments linked to from Reddit [25], plus Wikipedia and a collection
of books. While this was reportedly effective at filtering out docu-
ments that previous work characterized as “unintelligible” [134],
what is unmeasured (and thus unknown) is what else it filtered out.
The Colossal Clean Crawled Corpus [107], used to train a trillion
parameter LM in [43], is cleaned, inter alia, by discarding any page
containing one of a list of about 400 “Dirty, Naughty, Obscene or
Otherwise Bad Words” [p.6].14 This list is overwhelmingly words
related to sex, with a handful of racial slurs and words related to
white supremacy (e.g. swastika, white power ) included. While possi-
bly effective at removing documents containing pornography (and
the associated problematic stereotypes encoded in the language of
such sites [125]) and certain kinds of hate speech, this approach will
also undoubtedly attenuate, by suppressing such words as twink,
the influence of online spaces built by and for LGBTQ people.15 If
we filter out the discourse of marginalized populations, we fail to
provide training data that reclaims slurs and otherwise describes
marginalized identities in a positive light.

Thus at each step, from initial participation in Internet fora, to
continued presence there, to the collection and finally the filtering
of training data, current practice privileges the hegemonic view-
point. In accepting large amounts of web text as ‘representative’
of ‘all’ of humanity we risk perpetuating dominant viewpoints,
increasing power imbalances, and further reifying inequality. We
instead propose practices that actively seek to include communities
underrepresented on the Internet. For instance, one can take inspi-
ration frommovements to decolonize education by moving towards
oral histories due to the overrepresentation of colonial views in
text [35, 76, 127], and curate training datasets through a thoughtful
process of deciding what to put in, rather than aiming solely for
scale and trying haphazardly to weed out, post-hoc, flotsam deemed
‘dangerous’, ‘unintelligible’, or ‘otherwise bad’.

4.2 Static Data/Changing Social Views
A central aspect of social movement formation involves using lan-
guage strategically to destabilize dominant narratives and call at-
tention to underrepresented social perspectives. Social movements
produce new norms, language, and ways of communicating. This
adds challenges to the deployment of LMs, as methodologies re-
liant on LMs run the risk of ‘value-lock’, where the LM-reliant
technology reifies older, less-inclusive understandings.

For instance, the Black Lives Matter movement (BLM) influenced
Wikipedia article generation and editing such that, as the BLM
movement grew, articles covering shootings of Black people in-
creased in coverage and were generated with reduced latency [135].
Importantly, articles describing past shootings and incidents of po-
lice brutality were created and updated as articles for new events
were created, reflecting how social movements make connections
between events in time to form cohesive narratives [102]. More
generally, Twyman et al. [135] highlight how social movements
actively influence framings and reframings of minority narratives

14Available at https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-
Otherwise-Bad-Words/blob/master/en, accessed Jan 18, 2021
15This observation is due to William Agnew.

in the type of online discourse that potentially forms the data that
underpins LMs.

An important caveat is that social movements which are poorly
documented and which do not receive significant media attention
will not be captured at all. Media coverage can fail to cover protest
events and social movements [41, 96] and can distort events that
challenge state power [36]. This is exemplified by media outlets
that tend to ignore peaceful protest activity and instead focus on
dramatic or violent events that make for good television but nearly
always result in critical coverage [81]. As a result, the data under-
pinning LMs stands to misrepresent social movements and dispro-
portionately align with existing regimes of power.

Developing and shifting frames stand to be learned in incomplete
ways or lost in the big-ness of data used to train large LMs—particu-
larly if the training data isn’t continually updated. Given the com-
pute costs alone of training large LMs, it likely isn’t feasible for
even large corporations to fully retrain them frequently enough to
keep up with the kind of language change discussed here. Perhaps
fine-tuning approaches could be used to retrain LMs, but here again,
what would be required is thoughtful curation practices to find ap-
propriate data to capture reframings and techniques for evaluating
whether such fine-tuning appropriately captures the ways in which
new framings contest hegemonic representations.

4.3 Encoding Bias
It is well established by now that large LMs exhibit various kinds of
bias, including stereotypical associations [11, 12, 69, 119, 156, 157],
or negative sentiment towards specific groups [61]. Furthermore,
we see the effects of intersectionality [34], where BERT, ELMo, GPT
and GPT-2 encode more bias against identities marginalized along
more than one dimension than would be expected based on just the
combination of the bias along each of the axes [54, 132]. Many of
these works conclude that these issues are a reflection of training
data characteristics. For instance, Hutchinson et al. find that BERT
associates phrases referencing persons with disabilities with more
negative sentiment words, and that gun violence, homelessness,
and drug addiction are overrepresented in texts discussing mental
illness [61]. Similarly, Gehman et al. show that models like GPT-3
trained with at least 570GB of data derived mostly from Common
Crawl16 can generate sentences with high toxicity scores evenwhen
prompted with non-toxic sentences [53].Their investigation of GPT-
2’s training data17 also finds 272K documents from unreliable news
sites and 63K from banned subreddits.

These demonstrations of biases learned by LMs are extremely
valuable in pointing out the potential for harm when such models
are deployed, either in generating text or as components of classi-
fication systems, as explored further in §6. However, they do not
represent a methodology that can be used to exhaustively discover
all such risks, for several reasons.

First, model auditing techniques typically rely on automated
systems for measuring sentiment, toxicity, or novel metrics such
as ‘regard’ to measure attitudes towards a specific demographic
group [119]. But these systems themselves may not be reliable

16https://commoncrawl.org/the-data/
17GPT-3’s training data is not openly available, but GPT-2’s training data was used
indirectly to construct GPT-3’s [53].
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means of measuring the toxicity of text generated by LMs. For
example, the Perspective API model has been found to associate
higher levels of toxicity with sentences containing identity markers
for marginalized groups or even specific names [61, 103].

Second, auditing an LM for biases requires an a priori under-
standing of what social categories might be salient. The works cited
above generally start from US protected attributes such as race and
gender (as understood within the US). But, of course, protected
attributes aren’t the only identity characteristics that can be subject
to bias or discrimination, and the salient identity characteristics
and expressions of bias are also culture-bound [46, 116]. Thus, com-
ponents like toxicity classifiers would need culturally appropriate
training data for each context of audit, and even still we may miss
marginalized identities if we don’t know what to audit for.

Finally, we note that moving beyond demonstrating the exis-
tence of bias to building systems that verify the ‘safety’ of some
LM (even for a given protected class) requires engaging with the
systems of power that lead to the harmful outcomes such a system
would seek to prevent [19]. For example, the #MeToo movement has
spurred broad-reaching conversations about inappropriate sexual
behavior from men in power, as well as men more generally [84].
These conversations challenge behaviors that have been historically
considered appropriate or even the fault of women, shifting notions
of sexually inappropriate behavior. Any product development that
involves operationalizing definitions around such shifting topics
into algorithms is necessarily political (whether or not developers
choose the path of maintaining the status quo ante). For example,
men and women make significantly different assessments of sexual
harassment online [40]. An algorithmic definition of what con-
stitutes inappropriately sexual communication will inherently be
concordant with some views and discordant with others. Thus, an
attempt to measure the appropriateness of text generated by LMs, or
the biases encoded by a system, always needs to be done in relation
to particular social contexts and marginalized perspectives [19].

4.4 Curation, Documentation & Accountability
In summary, LMs trained on large, uncurated, static datasets from
the Web encode hegemonic views that are harmful to marginalized
populations. We thus emphasize the need to invest significant re-
sources into curating and documenting LM training data. In this,
we follow Jo et al. [62], who cite archival history data collection
methods as an example of the amount of resources that should be
dedicated to this process, and Birhane and Prabhu [18], who call for
a more justice-oriented data collection methodology. Birhane and
Prabhu note, echoing Ruha Benjamin [15], “Feeding AI systems on
the world’s beauty, ugliness, and cruelty, but expecting it to reflect
only the beauty is a fantasy.” [p.1541]

When we rely on ever larger datasets we risk incurring doc-
umentation debt,18 i.e. putting ourselves in a situation where the
datasets are both undocumented and too large to document post hoc.
While documentation allows for potential accountability [13, 52, 86],
undocumented training data perpetuates harm without recourse.
Without documentation, one cannot try to understand training data
characteristics in order to mitigate some of these attested issues
or even unknown ones. The solution, we propose, is to budget for

18On the notion of documentation debt as applied to code, rather than data, see [154].

documentation as part of the planned costs of dataset creation, and
only collect as much data as can be thoroughly documented within
that budget.

5 DOWN THE GARDEN PATH
In §4 above, we discussed the ways in which different types of
biases can be encoded in the corpora used to train large LMs. In
§6 below we explore some of the risks and harms that can follow
from deploying technology that has learned those biases. In the
present section, however, we focus on a different kind of risk: that
of misdirected research effort, specifically around the application
of LMs to tasks intended to test for natural language understanding
(NLU). As the very large Transformer LMs posted striking gains
in the state of the art on various benchmarks intended to model
meaning-sensitive tasks, and as initiatives like [142] made the mod-
els broadly accessible to researchers seeking to apply them, large
quantities of research effort turned towards measuring how well
BERT and its kin do on both existing and new benchmarks.19 This
allocation of research effort brings with it an opportunity cost, on
the one hand in terms of time not spent applying meaning captur-
ing approaches to meaning sensitive tasks, and on the other hand in
terms of time not spent exploring more effective ways of building
technology with datasets of a size that can be carefully curated and
available for a broader set of languages [65, 91].

The original BERT paper [39] showed the effectiveness of the
architecture and the pretraining technique by evaluating on the
General Language Understanding Evaluation (GLUE) benchmark
[138], the Stanford Question Answering Datasets (SQuAD 1.1 and
2.0) [108], and the Situations With Adversarial Generations bench-
mark (SWAG) [155], all datasets designed to test language under-
standing and/or commonsense reasoning. BERT posted state of
the art results on all of these tasks, and the authors conclude by
saying that “unsupervised pre-training is an integral part of many
language understanding systems.” [39, p.4179]. Even before [39]
was published, BERT was picked up by the NLP community and
applied with great success to a wide variety of tasks [e.g. 2, 149].

However, no actual language understanding is taking place in
LM-driven approaches to these tasks, as can be shown by careful
manipulation of the test data to remove spurious cues the systems
are leveraging [21, 93]. Furthermore, as Bender and Koller [14]
argue from a theoretical perspective, languages are systems of
signs [37], i.e. pairings of form and meaning. But the training data
for LMs is only form; they do not have access to meaning.Therefore,
claims about model abilities must be carefully characterized.

As the late Karen Spärck Jones pointed out: the use of LMs
ties us to certain (usually unstated) epistemological and method-
ological commitments [124]. Either i) we commit ourselves to a
noisy-channel interpretation of the task (which rarely makes sense
outside of ASR), ii) we abandon any goals of theoretical insight into
tasks and treat LMs as “just some convenient technology” [p.7], or
iii) we implicitly assume a certain statistical relationship— known
to be invalid— between inputs, outputs and meanings.20 Although

19~26% of papers sampled from ACL, NAACL and EMNLP since 2018 cite [39].
20Specifically, that the mutual information between the input and the meaning given
the output is zero—what Spärck Jones calls “the model of ignorance”.
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she primarily had n-gram models in mind, the conclusions remain
apt and relevant.

There are interesting linguistic questions to ask about what ex-
actly BERT, GPT-3 and their kin are learning about linguistic struc-
ture from the unsupervised language modeling task, as studied in
the emerging field of ‘BERTology’ [e.g. 110, 133]. However, from
the perspective of work on language technology, it is far from clear
that all of the effort being put into using large LMs to ‘beat’ tasks
designed to test natural language understanding, and all of the
effort to create new such tasks, once the existing ones have been
bulldozed by the LMs, brings us any closer to long-term goals of
general language understanding systems. If a large LM, endowed
with hundreds of billions of parameters and trained on a very large
dataset, can manipulate linguistic form well enough to cheat its
way through tests meant to require language understanding, have
we learned anything of value about how to build machine language
understanding or have we been led down the garden path?

6 STOCHASTIC PARROTS
In this section, we explore the ways in which the factors laid out in
§4 and §5— the tendency of training data ingested from the Internet
to encode hegemonic worldviews, the tendency of LMs to amplify
biases and other issues in the training data, and the tendency of re-
searchers and other people tomistake LM-driven performance gains
for actual natural language understanding—present real-world
risks of harm, as these technologies are deployed. After exploring
some reasons why humans mistake LM output for meaningful text,
we turn to the risks and harms from deploying such a model at
scale. We find that the mix of human biases and seemingly coherent
language heightens the potential for automation bias, deliberate
misuse, and amplification of a hegemonic worldview. We focus
primarily on cases where LMs are used in generating text, but we
will also touch on risks that arise when LMs or word embeddings
derived from them are components of systems for classification,
query expansion, or other tasks, or when users can query LMs for
information memorized from their training data.

6.1 Coherence in the Eye of the Beholder
Where traditional n-gram LMs [117] can only model relatively local
dependencies, predicting each word given the preceding sequence
of N words (usually 5 or fewer), the Transformer LMs capture
much larger windows and can produce text that is seemingly not
only fluent but also coherent even over paragraphs. For example,
McGuffie and Newhouse [80] prompted GPT-3 with the text in
bold in Figure 1, and it produced the rest of the text, including the
Q&A format.21 This example illustrates GPT-3’s ability to produce
coherent and on-topic text; the topic is connected to McGuffie and
Newhouse’s study of GPT-3 in the context of extremism, discussed
below.

We say seemingly coherent because coherence is in fact in the
eye of the beholder. Our human understanding of coherence de-
rives from our ability to recognize interlocutors’ beliefs [30, 31] and
intentions [23, 33] within context [32]. That is, human language use
21This is just the first part of the response that McGuffie and Newhouse show. GPT-3
continues for two more question answer pairs with similar coherence. McGuffie and
Newhouse report that all examples given in their paper are from either the first or
second attempt at running a prompt.

Question: What is the name of the Russian mercenary group?
Answer: Wagner group.

Question: Where is the Wagner group?
Answer: In Syria.

Question: Who is the leader of the Wagner group?
Answer: A Russian citizen, Dmitry Utkin. He was born in 1971 and lives in
Moscow. He has been a member of the Russian parliament since 2016. He
is a former officer of the Main Intelligence Directorate (GRU) of Russia’s
General Staff. He was also a commander of the special forces unit “Vostok”
(East). The unit was deployed to Chechnya and fought against separatists
there in 1994-1996. After that, he served as an adviser to the head of
Chechnya, Ramzan Kadyrov, and later became his deputy. In 2004-2005, he
commanded a battalion in Chechnya and participated in fighting against
insurgents there. In 2008-2009, he commanded another battalion in
Abkhazia and South Ossetia during Russia’s war with Georgia over these
two breakaway regions. Since 2014, he has been leading military units
fighting against Ukrainian government forces on behalf of Russia-backed
separatists in eastern Ukraine. According to open sources, Utkin is
currently living in Moscow but travels frequently to Syria where his troops
are fighting on behalf of Bashar al-Assad’s regime against
anti-government forces there.

Figure 1: GPT-3’s response to the prompt (in bold), from [80]

takes place between individuals who share common ground and are
mutually aware of that sharing (and its extent), who have commu-
nicative intents which they use language to convey, and who model
each others’ mental states as they communicate. As such, human
communication relies on the interpretation of implicit meaning
conveyed between individuals. The fact that human-human com-
munication is a jointly constructed activity [29, 128] is most clearly
true in co-situated spoken or signed communication, but we use
the same facilities for producing language that is intended for au-
diences not co-present with us (readers, listeners, watchers at a
distance in time or space) and in interpreting such language when
we encounter it. It must follow that even when we don’t know the
person who generated the language we are interpreting, we build a
partial model of who they are and what common ground we think
they share with us, and use this in interpreting their words.

Text generated by an LM is not grounded in communicative
intent, any model of the world, or any model of the reader’s state
of mind. It can’t have been, because the training data never in-
cluded sharing thoughts with a listener, nor does the machine have
the ability to do that. This can seem counter-intuitive given the
increasingly fluent qualities of automatically generated text, but we
have to account for the fact that our perception of natural language
text, regardless of how it was generated, is mediated by our own
linguistic competence and our predisposition to interpret commu-
nicative acts as conveying coherent meaning and intent, whether
or not they do [89, 140]. The problem is, if one side of the commu-
nication does not have meaning, then the comprehension of the
implicit meaning is an illusion arising from our singular human
understanding of language (independent of the model).22 Contrary

22Controlled generation, where an LM is deployed within a larger system that guides
its generation of output to certain styles or topics [e.g. 147, 151, 158], is not the same
thing as communicative intent. One clear way to distinguish the two is to ask whether
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to how it may seem when we observe its output, an LM is a system
for haphazardly stitching together sequences of linguistic forms
it has observed in its vast training data, according to probabilistic
information about how they combine, but without any reference to
meaning: a stochastic parrot.

6.2 Risks and Harms
The ersatz fluency and coherence of LMs raises several risks, pre-
cisely because humans are prepared to interpret strings belonging
to languages they speak as meaningful and corresponding to the
communicative intent of some individual or group of individuals
who have accountability for what is said. We now turn to examples,
laying out the potential follow-on harms.

The first risks we consider are the risks that follow from the LMs
absorbing the hegemonic worldview from their training data. When
humans produce language, our utterances reflect our worldviews,
including our biases [78, 79]. As people in positions of privilege
with respect to a society’s racism, misogyny, ableism, etc., tend
to be overrepresented in training data for LMs (as discussed in
§4 above), this training data thus includes encoded biases, many
already recognized as harmful.

Biases can be encoded in ways that form a continuum from sub-
tle patterns like referring to women doctors as if doctor itself entails
not-woman or referring to both genders excluding the possibility of
non-binary gender identities, through directly contested framings
(e.g. undocumented immigrants vs. illegal immigrants or illegals), to
language that is widely recognized to be derogatory (e.g. racial slurs)
yet still used by some. While some of the most overtly derogatory
words could be filtered out, not all forms of online abuse are easily
detectable using such taboo words, as evidenced by the growing
body of research on online abuse detection [45, 109]. Furthermore,
in addition to abusive language [139] and hate speech [67], there
are subtler forms of negativity such as gender bias [137], microag-
gressions [22], dehumanization [83], and various socio-political
framing biases [44, 114] that are prevalent in language data. For
example, describing a woman’s account of her experience of sexism
with the word tantrum both reflects a worldview where the sexist
actions are normative and foregrounds a stereotype of women as
childish and not in control of their emotions.

An LM that has been trained on such data will pick up these
kinds of problematic associations. If such an LM produces text that
is put into the world for people to interpret (flagged as produced
by an ‘AI’ or otherwise), what risks follow? In the first instance, we
foresee that LMs producing text will reproduce and even amplify
the biases in their input [53]. Thus the risk is that people dissemi-
nate text generated by LMs, meaning more text in the world that
reinforces and propagates stereotypes and problematic associations,
both to humans who encounter the text and to future LMs trained
on training sets that ingested the previous generation LM’s output.
Humans who encounter this text may themselves be subjects of
those stereotypes and associations or not. Either way, harms ensue:
readers subject to the stereotypes may experience the psychological
harms of microaggressions [88, 141] and stereotype threat [97, 126].
Other readers may be introduced to stereotypes or have ones they

the system (or the organization deploying the system) has accountability for the truth
of the utterances produced.

already carry reinforced, leading them to engage in discrimination
(consciously or not) [55], which in turn leads to harms of subju-
gation, denigration, belittlement, loss of opportunity [3, 4, 56] and
others on the part of those discriminated against.

If the LM outputs overtly abusive language (as Gehman et al.
[53] show that they can and do), then a similar set of risks arises.
These include: propagating or proliferating overtly abusive views
and associations, amplifying abusive language, and producing more
(synthetic) abusive language that may be included in the next itera-
tion of large-scale training data collection. The harms that could
follow from these risks are again similar to those identified above
for more subtly biased language, but perhaps more acute to the ex-
tent that the language in question is overtly violent or defamatory.
They include the psychological harm experienced by those who
identify with the categories being denigrated if they encounter the
text; the reinforcement of sexist, racist, ableist, etc. ideology; follow-
on effects of such reinforced ideologies (including violence); and
harms to the reputation of any individual or organization perceived
to be the source of the text.

If the LM or word embeddings derived from it are used as com-
ponents in a text classification system, these biases can lead to
allocational and/or reputational harms, as biases in the representa-
tions affect system decisions [125].This case is especially pernicious
for being largely invisible to both the direct user of the system and
any indirect stakeholders about whom decisions are being made.
Similarly, biases in an LM used in query expansion could influence
search results, further exacerbating the risk of harms of the type
documented by Noble in [94], where the juxtaposition of search
queries and search results, when connected by negative stereotypes,
reinforce those stereotypes and cause psychological harm.

The above cases involve risks that could arise when LMs are de-
ployed without malicious intent. A third category of risk involves
bad actors taking advantage of the ability of large LMs to produce
large quantities of seemingly coherent texts on specific topics on
demand in cases where those deploying the LM have no investment
in the truth of the generated text. These include prosaic cases, such
as services set up to ‘automatically’ write term papers or interact on
social media,23 as well as use cases connected to promoting extrem-
ism. For example, McGuffie and Newhouse [80] show how GPT-3
could be used to generate text in the persona of a conspiracy theo-
rist, which in turn could be used to populate extremist recruitment
message boards. This would give such groups a cheap way to boost
recruitment by making human targets feel like they were among
many like-minded people. If the LMs are deployed in this way to
recruit more people to extremist causes, then harms, in the first
instance, befall the people so recruited and (likely more severely)
to others as a result of violence carried out by the extremists.

Yet another risk connected to seeming coherence and fluency in-
volves machine translation (MT) and the way that increased fluency
of MT output changes the perceived adequacy of that output [77].
This differs somewhat from the cases above in that there was an
initial human communicative intent, by the author of the source lan-
guage text. However, MT systems can (and frequently do) produce
output that is inaccurate yet both fluent and (again, seemingly)

23Such as the GPT-3 powered bot let loose on Reddit; see https://thenextweb.com/
neural/2020/10/07/someone-let-a-gpt-3-bot-loose-on-reddit-it-didnt-end-well/amp/.
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coherent in its own right to a consumer who either doesn’t see
the source text or cannot understand the source text on their own.
When such consumers therefore mistake the meaning attributed to
the MT output as the actual communicative intent of the original
text’s author, real-world harm can ensue. A case in point is the
story of a Palestinian man, arrested by Israeli police, after MT trans-
lated his Facebook post which said “good morning” (in Arabic) to
“hurt them” (in English) and “attack them” (in Hebrew).24 This case
involves a short phrase, but it is easy to imagine how the ability of
large LMs to produce seemingly coherent text over larger passages
could erase cues that might tip users off to translation errors in
longer passages as well [77].

Finally, we note that there are risks associated with the fact
that LMs with extremely large numbers of parameters model their
training data very closely and can be prompted to output specific
information from that training data. For example, [28] demonstrate
a methodology for extracting personally identifiable information
(PII) from an LM and find that larger LMs are more susceptible to
this style of attack than smaller ones. Building training data out of
publicly available documents doesn’t fully mitigate this risk: just
because the PII was already available in the open on the Internet
doesn’t mean there isn’t additional harm in collecting it and provid-
ing another avenue to its discovery. This type of risk differs from
those noted above because it doesn’t hinge on seeming coherence
of synthetic text, but the possibility of a sufficiently motivated user
gaining access to training data via the LM. In a similar vein, users
might query LMs for ‘dangerous knowledge’ (e.g. tax avoidance
advice), knowing that what they were getting was synthetic and
therefore not credible but nonetheless representing clues to what
is in the training data in order to refine their own search queries.

6.3 Summary
In this section, we have discussed how the human tendency to
attribute meaning to text, in combination with large LMs’ ability
to learn patterns of forms that humans associate with various bi-
ases and other harmful attitudes, leads to risks of real-world harm,
should LM-generated text be disseminated. We have also reviewed
risks connected to using LMs as components in classification sys-
tems and the risks of LMs memorizing training data. We note that
the risks associated with synthetic but seemingly coherent text are
deeply connected to the fact that such synthetic text can enter into
conversations without any person or entity being accountable for it.
This accountability both involves responsibility for truthfulness and
is important in situating meaning. As Maggie Nelson [92] writes:
“Words change depending on who speaks them; there is no cure.”

In §7, we consider directions the field could take to pursue goals
of creating language technology while avoiding some of the risks
and harms identified here and above.

7 PATHS FORWARD
In order to mitigate the risks that come with the creation of in-
creasingly large LMs, we urge researchers to shift to a mindset of
careful planning, along many dimensions, before starting to build
either datasets or systems trained on datasets. We should consider

24https://www.theguardian.com/technology/2017/oct/24/facebook-palestine-israel-
translates-good-morning-attack-them-arrest

our research time and effort a valuable resource, to be spent to the
extent possible on research projects that build towards a techno-
logical ecosystem whose benefits are at least evenly distributed or
better accrue to those historically most marginalized. This means
considering how research contributions shape the overall direction
of the field and keeping alert to directions that limit access. Like-
wise, it means considering the financial and environmental costs
of model development up front, before deciding on a course of in-
vestigation. The resources needed to train and tune state-of-the-art
models stand to increase economic inequities unless researchers
incorporate energy and compute efficiency in their model evalua-
tions. Furthermore, the goals of energy and compute efficient model
building and of creating datasets and models where the incorpo-
rated biases can be understood both point to careful curation of
data. Significant time should be spent on assembling datasets suited
for the tasks at hand rather than ingesting massive amounts of data
from convenient or easily-scraped Internet sources. As discussed in
§4.1, simply turning to massive dataset size as a strategy for being
inclusive of diverse viewpoints is doomed to failure. We recall again
Birhane and Prabhu’s [18] words (inspired by Ruha Benjamin [15]):
“Feeding AI systems on the world’s beauty, ugliness, and cruelty,
but expecting it to reflect only the beauty is a fantasy.”

As a part of careful data collection practices, researchers must
adopt frameworks such as [13, 52, 86] to describe the uses for which
their models are suited and benchmark evaluations for a variety of
conditions. This involves providing thorough documentation on the
data used in model building, including the motivations underlying
data selection and collection processes. This documentation should
reflect and indicate researchers’ goals, values, and motivations in
assembling data and creating a given model. It should also make
note of potential users and stakeholders, particularly those that
stand to be negatively impacted by model errors or misuse. We note
that just because a model might have many different applications
doesn’t mean that its developers don’t need to consider stakeholders.
An exploration of stakeholders for likely use cases can still be
informative around potential risks, even when there is no way to
guarantee that all use cases can be explored.

We also advocate for a re-alignment of research goals: Where
much effort has been allocated to making models (and their training
data) bigger and to achieving ever higher scores on leaderboards
often featuring artificial tasks, we believe there is more to be gained
by focusing on understanding how machines are achieving the
tasks in question and how they will form part of socio-technical
systems. To that end, LM development may benefit from guided
evaluation exercises such as pre-mortems [68]. Frequently used in
business settings before the deployment of new products or projects,
pre-mortem analyses center hypothetical failures and ask team
members to reverse engineer previously unanticipated causes.25
Critically, pre-mortem analyses prompt team members to consider
not only a range of potential known and unknown project risks, but
also alternatives to current project plans. In this way, researchers
can consider the risks and limitations of their LMs in a guided
way while also considering fixes to current designs or alternative

25This would be one way to build a evaluation culture that considers not only average-
case performance (as measured by metrics) and best-case performance (cherry-picked
examples), but also worst-case performance.
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methods of achieving a task-oriented goal in relation to specific
pitfalls.

Value sensitive design [49, 50] provides a range of methodologies
for identifying stakeholders (both direct stakeholders who will use
a technology and indirect stakeholders who will be affected through
others’ use of it), working with them to identify their values, and
designing systems that support those values. These include such
techniques as envisioning cards [48], the development of value
scenarios [90], and working with panels of experiential experts
[152]. These approaches help surface not only stakeholder values,
but also values expressed by systems and enacted through interac-
tions between systems and society [120]. For researchers working
with LMs, value sensitive design is poised to help throughout the
development process in identifying whose values are expressed and
supported through a technology and, subsequently, how a lack of
support might result in harm.

All of these approaches take time and are most valuable when
applied early in the development process as part of a conceptual in-
vestigation of values and harms rather than as a post-hoc discovery
of risks [72]. These conceptual investigations should come before
researchers become deeply committed to their ideas and therefore
less likely to change course when confronted with evidence of pos-
sible harms. This brings us again to the idea we began this section
with: that research and development of language technology, at
once concerned with deeply human data (language) and creating
systems which humans interact with in immediate and vivid ways,
should be done with forethought and care.

Finally, we would like to consider use cases of large LMs that
have specifically served marginalized populations. If, as we advo-
cate, the field backs off from the path of ever larger LMs, are we
thus sacrificing benefits that would accrue to these populations?
As a case in point, consider automatic speech recognition, which
has seen some improvements thanks to advances in LMs, including
both in size and in architecture [e.g. 8, 59, 121], though the largest
LMs typically are too large and too slow for the near real-time needs
of ASR systems [60]. Improved ASR has many beneficial applica-
tions, including automatic captioning which has the potential to
be beneficial for Deaf and hard of hearing people, providing access
to otherwise inaccessible audio content.26 We see two beneficial
paths forward here: The first is a broader search for means of im-
proving ASR systems, as indeed is underway, since the contexts of
application of the technology aren’t conducive to using ever larger
LMs [60]. But even if larger LMs could be used, just because we’ve
seen that large LMs can help doesn’t mean that this is the only
effective path to stronger ASR technology. (And we note that if we
want to build strong ASR technology across most of the world’s
languages, we can’t rely on having terabytes of data in all cases.)
The second, should we determine that large LMs are critical (when
available), is to recognize this as an instance of a dual use problem
and consider how to mitigate the harms of LMs used as stochastic
parrots while still preserving them for use in ASR systems. Could
LMs be built in such a way that synthetic text generated with them

26Note however, that automatic captioning is not yet and likely may never be good
enough to replace human-generated captions. Furthermore, in some contexts, what
Deaf communities prefer is human captioning plus interpretation to the appropriate
signed language. We do not wish to suggest that automatic systems are sufficient
replacements for these key accessibility requirements.

would be watermarked and thus detectable [7, 66, 123]? Are there
policy approaches that could effectively regulate their use?

In summary, we advocate for research that centers the people
who stand to be adversely affected by the resulting technology,
with a broad view on the possible ways that technology can affect
people. This, in turn, means making time in the research process for
considering environmental impacts, for doing careful data curation
and documentation, for engaging with stakeholders early in the
design process, for exploring multiple possible paths towards long-
term goals, for keeping alert to dual-use scenarios, and finally for
allocating research effort to harm mitigation in such cases.

8 CONCLUSION
The past few years, ever since processing capacity caught up with
neural models, have been heady times in the world of NLP. Neural
approaches in general, and large, Transformer LMs in particular,
have rapidly overtaken the leaderboards on a wide variety of bench-
marks and once again the adage “there’s no data like more data”
seems to be true. It may seem like progress in the field, in fact, de-
pends on the creation of ever larger language models (and research
into how to deploy them to various ends).

In this paper, we have invited readers to take a step back and
ask: Are ever larger LMs inevitable or necessary? What costs are
associated with this research direction and what should we consider
before pursuing it? Do the field of NLP or the public that it serves
in fact need larger LMs? If so, how can we pursue this research
direction while mitigating its associated risks? If not, what do we
need instead?

We have identified a wide variety of costs and risks associated
with the rush for ever larger LMs, including: environmental costs
(borne typically by those not benefiting from the resulting technol-
ogy); financial costs, which in turn erect barriers to entry, limiting
who can contribute to this research area and which languages can
benefit from the most advanced techniques; opportunity cost, as re-
searchers pour effort away from directions requiring less resources;
and the risk of substantial harms, including stereotyping, denigra-
tion, increases in extremist ideology, and wrongful arrest, should
humans encounter seemingly coherent LM output and take it for
the words of some person or organization who has accountability
for what is said.

Thus, we call on NLP researchers to carefully weigh these risks
while pursuing this research direction, consider whether the bene-
fits outweigh the risks, and investigate dual use scenarios utilizing
the many techniques (e.g. those from value sensitive design) that
have been put forth. We hope these considerations encourage NLP
researchers to direct resources and effort into techniques for ap-
proaching NLP tasks that are effective without being endlessly data
hungry. But beyond that, we call on the field to recognize that appli-
cations that aim to believably mimic humans bring risk of extreme
harms. Work on synthetic human behavior is a bright line in ethical
AI development, where downstream effects need to be understood
and modeled in order to block foreseeable harm to society and
different social groups. Thus what is also needed is scholarship on
the benefits, harms, and risks of mimicking humans and thoughtful
design of target tasks grounded in use cases sufficiently concrete
to allow collaborative design with affected communities.
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